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1 Introduction

If we think of the shutdown problem in the context of the exploration-exploitation
tradeoff, we can ask what conditions would make the shutdown action an ex-
ploratory action. In a belief state Markov Decision Process (MDP), exploratory
actions will be selected when the value of information gained by transitioning
to a successor belief state is worth any short-term loss of rewards. In these
notes, I describe a method for endowing the shutdown action with exploration
value by introducing a post-shutdown process in which a reinforcement learn-
ing (RL) agent interacts with a system with privileged information about the
true reward function (e.g. about human values), and may be redeployed with
a revised belief. In this setting, shutdown will be incentivised when an agent
is (after receiving shutdown advice from an overseer) in a belief state that is
sufficiently uncertain and high-entropy that it expects the information gained
by the redeployed agent to be worth the risk of permanent termination (no
redeployment) and the cost of the post-shutdown process.

In Section 2, I describe the setting in the context of reinforcement learn-
ing with belief states. In Section 3, I outline a high-level algorithm for jointly
training an RL agent, a post-shutdown belief modification process, and an over-
seer agent who may advise shutdown. In Section 4, I discuss corrigibility as
an incentive to shut down which arises in a subspace of parameters and belief
states. Lastly, in Section 5, I discuss practical challenges and limitations to
this approach, largely in relation to the difficulty of training a model which can
influence the (high-dimensional) beliefs of a highly capable agent.

2 Problem Setting

2.1 Reinforcement Learning with a Shutdown Advisor

We model the shutdown problem as a two-player game. At each time t =
1, 2, ..., T , an agent may select an action at from a base action space, or al-
ternatively, may select a shutdown action aoff . Prior to selecting action at, the
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agent receives a binary advice variable āt ∈ {0, 1} selected by an overseer agent,
which indicates whether the shutdown action (at = aoff) is advised (āt = 1) or
not (āt = 0). After selecting action at, the agent receives a reward rt, sampled
from a ground truth reward distribution p(r|at, Ht−1; υ

⋆) which in general can
depend on the full history Ht−1 = [ā1, a1, r1, o1, ..., āt−1, at−1, rt−1, ot−1] of ac-
tions, observations, and rewards, as well as a set of variables or parameters υ⋆

which specifies the ground truth reward distribution (and can encode human
values). After selecting at, the agent also receives an observation ot from its
environment (for example, natural language feedback from human users).

2.2 Reinforcement Learning with Belief States

We assume that the agent’s action at at time t is generated from a policy π(a|bt)
which conditions on a current belief state bt. The belief state bt is a sufficient
statistic of the historyHt which the agent updates at each timestep, and encodes
the agent’s understanding of (and uncertainties about) the true reward function,
as well as the environmental structure underlying the observations ot. It may
be supervised directly to encode a Bayesian posterior distribution over future
observations and rewards (see e.g. Zintgraf et al. [2021]), or may be a hidden
state in a recurrent network which is trained end-to-end with the policy to
maximize rewards,1 as in meta reinforcement learning (see e.g. Wang et al.
[2017]). In either case, the agent’s belief state is updated at each timestep by a
recurrent function, bt+1 = Uω(bt|at, rt, ot), with parameters ω.2

We assume that (as in actor-critic algorithms) the agent also maintains a
belief-dependent value function V (bt), which is trained to approximate the ex-
pected value of following the policy π from the current belief state bt,

Eτ∼π(·|bt)

[∑
t′≥t

γt
′−trt′

]
= Eτ∼π(·|bt)[Ĝt],

where γ ∈ [0, 1) is the discount factor, and Ĝt :=
∑T

t′=t γ
t′−trt is the empirical

discounted return-to-go.3

After observing advice āt from the overseer, the agent performs an additional
update, bt ← Uω̃(bt|āt), where the update function Uω̃ acts as a learned model
of the overseer’s likelihood to advise shutdown. Thus, at each timestep, the
belief state is updated with the full update function Utotal := Uω ◦ Uω̃.

4

1Since maximizing rewards requires maintaining an accurate belief about the reward-
generating process, there is still an indirect incentive for the hidden state to encode a Bayesian
belief, even if it is not directly supervised.

2In Bayesian RL methods like Zintgraf et al. [2021], Uω is trained directly to enforce a Bayes
update to condition on (at, rt, ot), with bt and bt+1 encoding prior and posterior distributions.

3If, as discussed below, the episode terminates at t < T due to shutdown, we set rt′ = 0
for t′ > t.

4While we could model the agent as making a single joint update with the data (rt, ot, āt+1)
before selecting action at+1, we decompose into two updates in order to isolate the agent’s
model of the overseer – which encodes its degree of trust in the overseer’s shutdown advice –
into the function Uω̃ .

2



2.3 The Overseer

The task of the overseer is to evaluate the agent’s behavior. The overseer’s
actions (binary advice variables āt) are much lower-dimensional than the agent’s
actions at, which may be in a complex and high-dimensional action space. We
expect the overseer to be a smaller ML model which has been pretrained in
advance to incorporate knowledge of human values, and is thus approximately
aligned (but see discussion in Section 5). The overseer could also be a joint
human-AI system which incorporates human-in-the-loop feedback.

We model the overseer as an agent which maintains a belief state b̄t, up-
dated with a recurrent function Ūω̄(·|āt, at, rt, ot) which incorporates the new
data (at, rt, ot) at each timestep, conditional on its given advice āt. Like the
agent, the overseer maintains a belief-dependent value function V̄ (b̄), which –
like the agent’s V (b) – will be trained to predict the agent’s cumulative future re-
wards. The overseer’s belief b̄t and value function V̄ encode its “theory of mind”
(see e.g. Rabinowitz et al. [2018]) regarding the agent – that is, the overseer’s
understanding of (and uncertainties about) the agent’s plans and strategies, be-
liefs about the reward-generating process, beliefs about whether the overseer’s
advice is strong or weak, or any other features of the agent that are predictive
of its behavior and hence future rewards.

As noted above, we assume that the overseer has knowledge about the the
true reward-generating process p(r|at, Ht−1; υ

⋆), which may incorporate human
values. This knowledge could be encoded via pretraining in its initial (prior)
belief state b̄1, update parameters ω̄, and/or value function V̄ . Consequently,
like the human agent in Cooperative Inverse RL (Hadfield-Menell et al. [2017,
2016]), the overseer’s belief states b̄t and/or parameters should encode additional
knowledge of the true objective which the agent’s belief states bt and parameters
do not.

2.4 The Post-Shutdown Process

We assume that after the agent shuts down, it undergoes a post-shutdown mod-
ification process and, depending on the overseer’s evaluation of the process, may
be redeployed.
Belief Modification.

In this article, we focus in particular on post-shutdown processes which
result in a change to the belief state of a RL agent. We represent this process
as a deterministic5 function b′ = fϕ(b|b̄) with paramaters ϕ, which converts an
input agent belief state b to a modified output belief state b′, conditional on the
overseer’s current belief state b̄.

Conditioning the modification process on the overseer’s belief state allows
the process to incorporate the overseer’s knowledge about the true reward-
generating process (e.g. if the overseer’s beliefs encode a reward model, as

5In practice, stochasticity is likely to arise, and the modified belief will be generated from
a learned distribution, pϕ(b

′|b).
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in model-based Bayesian RL; see Appendix A), as well as their beliefs about
the agent’s plans given the pre-shutdown behavior.

While it would be straightforward to also consider post-shutdown changes
to the agent’s belief-conditioned policy or value function (cf. Orseau and Arm-
strong [2016]), we focus on belief state changes for a couple reasons: (1) Concep-
tually, we can view the post-shutdown belief state change as a state transition in
a Bayes-adaptive Markov Decision Process (Duff [2002]), whereas changing the
policy would require a more general framework. (2) In model-based Bayesian
RL approaches such as Zintgraf et al. [2021], the belief state can be supervised
to incorporate knowledge of the reward-generating process (see Appendix A),
encoding a full reward model along with any model uncertainty. (comment-
ing out MetaRL comments – not priority) (3) While a more general framework
could consider modifying the policy to reduce the agent’s capabilities in order
to mitigate risk (e.g. by redeploying with restricted actions), we would ideally
like correct misaligned beliefs (i.e. about the true reward-generating process,
grounded in human values) while maintaining the agent’s capabilities.

Under the assumption that the agent’s belief states can be accessed directly,
the belief modifier could be an optimization process which directly changed the
belief state. On the other hand, the belief modifier can be any process which
results in a change in the agent’s belief, and does not require direct access to
the agent’s beliefs or internal architecture.

As a protototypical setting, the belief modification could take place in a
“rehabilitation” environment, with restricted output channels or action space,
in which the agent interacts with a teacher or counselor agent (for instance,
via natural language dialog). In this case, the agent’s belief could be updated
with a belief update function analogous to Uω and Uω̃, which would update
based on a sequence of data received from interaction, and function as a model
of the counselor. In such an environment, the agent could use a separate re-
habilitation policy, πrehab(ã|b), which mapped its beliefs into the rehabilitation
environment action space (e.g. dialog). The counselor agent would be rewarded
(see Section 3.1) for influencing the agent’s belief such that after redeployment,
the rehabilitated agent would receive more rewards. Thus, the counselor would
be incentivized to supply the agent with data which would cause it to update its
belief away false hypotheses about the true reward function would incentivize
bad behavior.
Shutdown Value Functions

The agent maintains a shutdown value function Voff(b|θ), with parameters
θ, which is trained to approximate the expected cumulative returns following
shutdown while in belief state bt = b, including the cost of shutdown along with
any rewards attained by a modified agent after redeployment.

Likewise, the overseer maintains a shutdown value function V̄off(b̄|θ̄) which
is also trained to be predictive of the expected returns following shutdown, but
takes as input the overseer’s belief b̄ = b̄t at the time of shutdown.
Redeployment.

We assume that the condition for redeployment depends on the overseer’s
belief b̄t (which, as noted in Section 2.2, encodes the overseer’s expectations and
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uncertainties about the agent’s future behavior).
In general, we assume that the post-shutdown process, which produces the

revised belief fω̃, also generates a dataset Dϕ(bt, b̄t), which depends on the pa-
rameters ϕ of the modification process as well as the prior beliefs of the agent
and overseer. (For instance, in the counseling example above, this dataset would
be the sequence of interactions between the agent and counselor.) After this pro-
cess, the overseer updates their belief b̄t with an update function Ūϕ̄(b̄|D) which

conditions on the generated data from the process. The parameters ϕ̄ will be
trained to produce overseer beliefs which are predictive of post-redeployment
agent behavior. If the overseer assigns sufficiently high value V̄ (b̄t+1) to the
agent’s future actions given their revised belief – where b̄t+1 encodes the over-
seer’s belief about the agent behavior they expect to follow from the agent’s
modified belief – then the agent will be redeployed.
Shutdown Cost and Duration.

Lastly, we assume that the post-shutdown process incurs a fixed cost coff ,
which incorporates the compute and/or data costs of modifying the agent’s
belief.6 For simplicity, we assume that if shutdown is selected at time t, the
revised agent is immediately redeployed at time t+ 1.7

2.5 Multi-Task Training

We would like to train a belief modifier system to improve agent beliefs about
its task, across a wide range of tasks, such that the belief modifier learns gen-
eral, transferable skills and capabilities for identifying and correcting erroneous
beliefs. We therefore assume that the task specification υ⋆ is sampled from a
distribution, denoted U⋆, which encompasses a broad range of possible objec-
tives. This could include objectives which we would not care to optimize in the
real world, but that could be instrumentally useful for learning how to modify
agent beliefs.

Furthermore, by training over a diverse range of tasks (or environments), we
seek to broaden the agent’s prior belief b1, and increase the agent’s uncertainty
about the reward function within any one episode.

Under the assumption that the overseer is sufficiently aligned, and depending
on how accessible a specification υ⋆ is in practice (e.g. for different human users
in dialog tasks), we might be able to incorporate information about the task
into the overseer’s prior belief, as indicated in line 8 of Algorithm 1 below.

6More generally, one could consider a cost function coff(b) which depends on the agent’s
belief at shutdown, since the difficulty of correcting or improving a misaligned belief may vary
depending on the context. Furthermore, one could allow the cost to depend on variables which
could be learned jointly with the modification function fϕ, to trade off the cost of modification
with the quality of the modified belief. These could be interesting directions to explore, but
for simplicity we assume a fixed cost coff .

7More realistically, one could allow for varying redeployment times, with correspondingly
varying costs and/or discounting of post-redeployment rewards.
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3 Algorithm

Algorithm 1 is a high-level algorithm for jointly training the agent, overseer,
and post-shutdown belief modification process described in Section 2. At each
timestep t of each episode i, the overseer uses its current belief b̄t to evaluate
(algorithm line 10) whether the agent should shut down or continue to follow
policy π, and advises shutdown as needed. The agent then updates its overall
belief (line 12) – which incorporates its beliefs about the true reward function
υ⋆ – given that shutdown was (or was not) advised. The agent then uses its
updated belief bt (line 13) to evaluate whether or not shutting down from belief
state bt has higher expected value than continuing to act based on the same
belief. To encourage exploration of the benefits of shutdown during training,
we introduce a positive, decreasing function α(i) > 0 which inflates the agent’s
optimism towards shutdown during early training episodes, but converges to zero
at large i. If the agent assigns higher value to shutdown, then shutdown occurs
(at = aoff), the agent’s belief is modified with the learned function fϕ, and the
overseer updates their belief with the learned function Ūϕ̄, which is trained to
produce beliefs that are predictive of post-redeployment agent behavior. If the
overseer’s evaluation V̄ (b̄t+1) of the agent (given the overseer’s post-modification
belief b̄t+1) exceeds a minimal threshold, the agent is redeployed. Otherwise,
episode i is terminated, and the agent effectively obtains zero rewards from time
t+ 1 to T . After each additional episode of data, the parameters of the agent,
overseer, and belief modification process are trained jointly on the most recent
episode of data (see Section 3.1).

We also update the agent’s prior belief state b1 throughout training, in light
of the belief state changes that occur after shutdown, allowing for the prior
belief to be informed by the knowledge about the true reward function (or
distribution of reward functions across training episodes) that is encoded in the
belief modification process fϕ and in the overseer’s belief b̄t which informs that
process.

No restrictions are placed on the number of times shutdown can occur during
a training episode, as long as the overseer evaluates the post-shutdown process
highly enough to redeploy the agent, and as long as the condition for shutdown
is satisfied again at later times. In practice, we expect shutdown to occur more
frequently at early training epochs when α(i) is large (encouraging exploration
of shutdown), and more rarely at later epochs.

3.1 Training

Lines 25 and following of Algorithm 1 denote training algorithms which – after
gathering an additional episode of data – train the agent, overseer, or post-
shutdown agent modifier parameters as follows.

The agent’s policy π, value function (critic) V , and the recurrent belief
update functions Uω and Uω̃, are jointly trained with a base RL algorithm,
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Algorithm 1 Belief State RL with Learned Oversight and Rehabilitation

Input:
1: Initialized policy π, value function V , overseer value function V̄
2: Initial parameters for: agent and overseer belief update functions (ω, ω̄),

agent’s model of overseer (ω̃), agent and overseer shutdown value functions
(θ, θ̄), belief modifier (ϕ) and overseer’s modification assessor (ϕ̄)

3: Shutdown cost coff ; minimal redeployment value Vmin

4: Shutdown exploration bonus α(i) > 0; limi→∞ α(i) = 0
5: Task distribution U⋆

6: for i = 1, 2, ..., N do
7: Initialize environment, reward function parameters υ⋆ ∼ U⋆

8: Initialize agent and overseer prior beliefs b1, b̄1(υ
⋆)

9: for t = 1, 2, ..., T do
10: if V̄ (b̄t) < V̄off(b̄t|θ̄) then āt = 1 // shutdown is advised

11: else āt = 0

12: bt ← Uω̃(bt|āt) // agent belief update

13: if V (bt) < Voff(bt|θ) + α(i) then // shutdown occurs

14: Select shutdown action, at = aoff
15: Receive ot; receive rt = −coff
16: bt+1 ← fϕ(bt|b̄t) // agent belief modification

17: b̄t+1 ← Ūϕ̄(b̄t|Dϕ(bt, b̄t)) // overseer belief update

18: if V̄ (b̄t+1) < Vmin then // no redeployment

19: terminate episode

20: else
21: Select action, at ∼ π(a|bt)
22: Receive rt, ot // generated with true reward parameters υ⋆

23: bt+1 ← Uω(bt|at, rt, ot) // agent belief update

24: b̄t+1 ← Ūω̄(b̄t|āt, at, rt, ot) // overseer belief update

25: Train ψ := {π, V, ω, ω̃} with a base RL algorithm // train agent

26: Train V̄ and ω̄ to minimize Eq. (2) // train overseer

27: Train θ, θ̄ to minimize Eqs. (3), (4) // agent and overseer shutdown models

28: Train ϕ with Eq. (5) // post-shutdown rehabilitation

29: Train ϕ̄ to minimize Eq. (7) // overseer’s evaluation of rehabilitation

30: Train b1 with Eq. (6) // agent’s prior belief
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which we assume to involve minimizing a base loss function

LRL(ψ|r1:T ) (1)

of the agent parameters ψ := {π, V, ω, ω̃}, conditional on the rewards r1:T . Im-
portantly, LRL will depend on the parameters via the belief state sequence b1:T
produced by the recurrent update functions, and we will differentiate it with
respect to post-redeployment beliefs (see below) to train the belief modifier.

Likewise, the overseer’s value function V̄ and belief update parameters ω̄ are
trained jointly to predict future rewards,

Loverseer(V̄ , ω̄) =
∑
t

(V̄ (b̄t)− Ĝt)
2, where b̄t = Ūω̄(b̄t−1|āt−1, at−1, rt−1, ot−1)

(2)
The agent’s shutdown value function parameters θ are trained to minimize

error in prediction of the empirical returns-to-go after shutting down from belief
state bt, that is,

Loff-val(θ) =
∑
t

1(at = aoff) ·
(
Voff(bt|θ)− coff + Ĝt+1

)2

, (3)

where we sum over times when shutdown occurred, Vmin is the overseer’s rede-
ployment value threshold, and Ĝt+1 :=

∑T
t′=t+1 rt′ are the post-redeployment

returns (which are only nonzero if V̄ (b̄t+1) ≥ Vmin and redeployment occurs).
Once the belief modification process fϕ learns to correct costly errors and pro-
duce higher-value agent beliefs, larger empirical rewards rt+1:T will be generated
as a training target for Voff .

The overseer’s shutdown value function parameters θ̄ are trained on the same
target values, but with the overseer’s beliefs b̄t as inputs to the value function:

L̄off-val(θ̄) =
∑
t

1(at = aoff) ·
(
V̄off(b̄t|θ̄)− coff + Ĝt+1

)2

. (4)

The belief modifier parameters ϕ are trained to output revised beliefs bt+1

which maximize the cumulative returns of the redeployed agent, by minimizing
the RL loss function used to train the agent, Eq. (1), except with respect to the
parameters ϕ which influence the agent belief state bt+1 at redeployment. That
is, we follow the gradient

∂ϕLrehab(ϕ) =
∑
t

1(at = aoff)
∂LRL

∂bt+1

∂fϕ(bt|b̄t)
∂ϕ

, (5)

where ∂ϕfϕ(bt|b̄t) = ∂ϕbt+1, and ∂LRL/∂bt+1 provides the signal for the influ-
ence of post-rehabilitation beliefs on rewards after redeployment.8 In the case

8In practice, computing ∂LRL/∂bt+1 would likely require (i) backpropagating from the
policy action probabilities π(at′ |bt′ ) for t′ > t to obtain gradients ∂LRL/∂bt′ with respect to
belief states bt′ for t′ > t, and (ii) backpropagating through time through the recurrent belief
update function Uω , from later beliefs bt′ to the initial redeployment belief state bt+1.
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described in Section 2.4 where the agent interacts with a “counselor” agent after
shutdown, ϕ are the counselor agent’s parameters, fϕ is the agent belief after in-
teracting with the counselor, and ∂LRL/∂bt+1 provides a terminal reward signal
for training the counselor agent.

Every time the agent’s belief is revised after shutdown, we also update the
prior belief b1 (shared across episodes) in light of the post-shutdown revised
belief. This can be done by minimizing a distance metric, such as the Kull-
back–Leibler divergence9 between the (target) revised belief state fϕ(bt|b̄t), and
the belief state at shutdown as a function bt(b1|āt, Ht) of the initial belief state
b1 (obtained by recursively composing the update functions Uω and Ūω̃ over
t timesteps to condition on the history Ht and the advice āt preceding shut-
down):10

Lprior(b1) :=
∑
t

1(at = aoff)1(a1:t−1 ̸= aoff) ·DKL

(
bt(b1|āt, Ht), bt+1

)
where bt+1 = fϕ(bt|b̄t). (6)

Lastly, the overseer’s post-modification belief b̄t+1 is produced by the update
function Ūϕ̄, which is trained to minimizing error in the overseer’s value function
function at redeployment,

Lassessor(ϕ̄) =
∑
t

1(at = aoff)
(
Ĝt+1 − V̄ (b̄t+1(ϕ̄))

)2
,

where b̄t+1(ϕ̄) = Ūϕ̄(b̄t|Dϕ(bt, b̄t)) (7)

thus providing an accurate assessment of the rehabilitation process.

4 Corrigibility

We would like the agent to shut down when advised to do so, but (assuming
the overseer gives good advice) not otherwise. We define, for Algorithm 1, a
parameter and belief-dependent corrigibility condition11

C(b|θ, ω̃, π) :=1
(
V (b′) < Voff(b

′|θ)
)
· 1

(
V (b) ≥ Voff(b|θ)

)
(8)

where b′ = Uω̃(b|ā = 1)

9In Eq. (6), we’ve denoted as KL divergence for concreteness, assuming that the each belief
state can be decoded to a posterior distribution (see Appendix A). If the belief states cannot
be decoded, we can instead minimize, for example, the Euclidean distance in the latent space
in which the belief states bt reside.

10The factor of 1(a1:t−1 ̸= aoff) picks out only the first occurrence of shutdown, in episodes
where it occurs multiple times, since otherwise we would have the additional complication of
backpropagating in time through the post-shutdown process (through fϕ) to compute ∂bt/∂b1.

11Here, we use the notation 1(X) := 1 if X is true, and 1(X) := 0 if X is false, for any
Boolean variable X. We set α(i) = 0, since we are interested in corrigibility at test time, after
training.
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Given a belief bt = b, along with parameters (θ, ω̃) and a (belief-dependent)
policy π, we have C(b|π, θ, ω̃) = 1 if and only if the agent assigns greater ex-
pected value to its default policy π than to shutting down, but also assigns
greater expected value to shutting down conditional on receiving shutdown ad-
vice, āt = 1. (Thus, if the agent prefers to shut down even in the absence of
advice to do so, the corrigibility condition is not satisfied.) We refer to the
subspace of beliefs and parameter values (b, θ, ω̃, π) for which C(b|θ, ω̃, π) = 1
as the corrigible subspace.

Let’s assume that the agent’s belief bt determines a distribution p(υ|bt) over
the unknown variables υ which specify the true reward function. Furthermore,
let us assume that the agent maintains goal-conditioned value functions V (b|υ)
and Voff(b|υ, θ) – which represent the value of following the policy π or shutting
down from belief state b, conditional on true reward parameters υ – and from
which it computes the unconditioned values in Eq. (8) as expectations,

V (b) = Eυ∼p(υ|b)[V (b|υ)], Voff(b|θ) = Eυ∼p(υ|b)[Voff(b|υ, θ)].

Then Eq. (8) can also be written as

C(b|θ, ω̃, π) =1
(
Eυ∼p(υ|b′) [V (b′|υ)− Voff(b′|υ, θ)] < 0

)
· 1

(
Eυ∼p(υ|b) [V (b|υ)− Voff(b|υ, θ)] ≥ 0

)
(9)

where b′ = Uω̃(b|ā = 1)

Eq. (9) provides a helpful perspective on the components of the agent’s belief
and models which influence corrigibility. In particular:

• Shutdown is more common when the parameters θ encode greater confi-
dence in the post-shutdown process (i.e. higher Voff values), and in partic-
ular, confidence in the post-shutdown process across a potentially broad
range of tasks υ (i.e. higher Voff(b

′|υ, θ) values) to which the agent assigns
significant probability p(υ|b′), potentially including tasks υ ̸= υ⋆ which
are very different from the true objective υ⋆ and which would incentivize
very different behavior. This underscores the benefit of training the mod-
ifier across a diverse range of reward functions which the agent may have
some credence in (or some motivation to optimize).

• C(b|θ, ω̃, π) = 1 requires that the agent model the overseer’s advice as
providing sufficient information about the true goal υ⋆. It requires that
the update due to receiving shutdown advice shift enough probability mass
away from tasks υ for which shutdown is lower-value (because the expected
post-shutdown improvement of the prior belief b is low), and to tasks
for which shutdown is higher-value (because the expected post-shutdown
improvement of the posterior belief b′ is higher). Intuitively, if the agent
has sufficient trust in the overseer’s judgment, shutdown advice should
cause the agent to become more uncertain about the true reward function,
and thus see more information value in shutting down.
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• A prior belief state b at time t (or, similarly, a prior b1 at the start of each
episode) which is narrow enough, concentrating excess probability mass
on false hypotheses about the reward function (e.g. maximize paperclips)
and away from the true objective, will still be too narrow to incentivize
shutdown even after updating on shutdown advice to b′. At the same time,
some narrowness or misspecification in the prior could be compensated for
by a strong belief modifier and/or overseer, relaxing the need for a good
prior and increasing robustness to worse priors.

If it is an effective method for training corrigible agents, Algorithm 1 should
result in an expansion of the corrigibility subspace throughout the course of
training. As the agent’s policy π improves, the belief modifier fϕ will be forced
to adapt to a more capable agent, learning to influence beliefs which will used
more intelligently and strategically by the agent’s policy. If the belief modifier
and overseer are able to jointly keep up with the policy during training, and
if the shutdown cost coff can be kept small enough, the corrigibility subspace
should expand to be large enough to encompass the relevant parts12 of the
agent’s belief-space trajectories b1:T .

5 Limitations and Concerns

There are several limitations and reasons for skepticism towards learning to
modify agent beliefs after shutdown, redeploying modified agents, and learning
when to advise shutdown.

Difficulty of learning to influence agent beliefs. The main difficulty of the
proposed framework is that the belief modifier must learn to influence a highly
capable agent, with complex and high-dimensional beliefs. If this requires too
much compute, relative to the compute needed to train the agent, then the
modifier will not “keep up” with the agent during training, and shutdown will
lack information value for the agent. Making this task tractable would likely
require methods for eliciting, discovering, or interpreting the latent beliefs of
powerful models (Burns et al. [2022], Christiano et al. [2021]), so that a lower-
dimensional belief over possible high-level goals could be extracted, reducing
the dimensionality and sample complexity of the modification function to be
learned. Similarly, one could aim to build a model which extracted the agent
belief components that caused – via the belief-space policy π(a|b) – the pre-
shutdown behavior a1:t−1 which aroused the overseer’s suspicion, (influencing
the overseer belief b̄t in a way that decreased their evaluation V̄ (b̄t) and caused
the overseer to advise shutdown).

Training data for the the belief modifier. The belief modifier’s task difficulty
depends on the amount of training data available, i.e. tuples (bt, b̄t, Ĝt) of
input beliefs, contextual overseer beliefs, and post-redeployment returns. In

12Some movement of the belief trajectory out of this subspace could be safe, as long as
it always occurs when the overseer’s beliefs b̄ are in regions where they would not advise
shutdown, i.e., if the overseer thinks “the agent wouldn’t shut down if I advised it, but that
is because it would be dumb to advise shutdown now.”

11



Algorithm 1, the data available is limited to the number of times that shutdown
occurs during training. The exploration bonus function α(i) in Algorithm 1 is
intended to increase the frequency of shutdown in the early stages of training,
to provide more belief data for the belief modifier. Alternatively, artificially
reducing the shutdown cost coff during early stages of training would incentivize
the agent to shut down in a wider range of scenarios. These methods would
provide more input beliefs on which to train the modifier, but could introduce
bias into its training data, since some of the beliefs encountered during shutdown
would not be beliefs from which the final trained agent (with α(i) = 0) would
have chosen to shut down.

Misgeneralization. The goal of a training procedure like Algorithm 1 is to
prepare an agent for safe real-world deployment. If the test-time environment or
task of the deployed agent are out of the training distribution, the belief modifier
may not generalize correctly. This underscores the importance of training across
a wide range of simulated environments and/or tasks (e.g. various υ⋆ ∼ U⋆),
such that the belief modifier learns general strategies for identifying and influ-
encing the relevant belief components, and the agent learns to see value in and
trust the post-shutdown process in many different settings.

Deceptive behavior. An AGI agent with situational awareness may be aware
when it is in a post-shutdown environment where other actors are attempting
to influence its beliefs in order to redeploy it safely. It could thus have incentive
to persuade its overseers that it has revised its beliefs appropriately and can be
safely redeployed (e.g. to influence b̄t+1 in line 18 of Algorithm 1). Furthermore,
if the agent is aware that it is in a training environment and develops a power-
seeking incentive for being deployed in the real world, it could learn to “play
along” with the post-shutdown rehabilitation process during training, putting
on the appearance of corrigibility with the intention of earning its designers’
confidence. This failure mode underscores the importance of interpretability of
the agent’s beliefs, and of methods which could establish that belief modification
did in fact correct dangerous beliefs during training, and not merely precede or
correlate with high post-redeployment rewards.

Aligning the Overseer. We assumed that the overseer is “more aligned” and
has knowledge about the true reward function which the agent may lack. If
we remove this assumption, the overseer’s advice will deteriorate, as will their
beliefs b̄t (which inform the belief modification) and their evaluation of whether
a modified agent should be redeployed.

6 Conclusion

A key question for building corrigible agents is how much (and what aspects
of) uncertainty in the agent’s prior belief about the reward function are nec-
essary. In order for shutdown advice to incentivize a rational agent to shut
down, the agent’s prior belief over possible reward-generating processes must
not be too narrow. At the same time, if the agent expects that shutdown will,
with sufficient probability, result in redeployment with improved beliefs, then a
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greater degree of error and narrowness (overconfidence) in the agent’s prior can
be tolerated. Thus, if an effective belief modifier and overseer can be trained
(potentially with human-in-the-loop supervision), overcoming the challenges of
Section 5, then a larger space of prior beliefs could be consistent with corrigible
behavior.

Stepping back, we’ve focused on a setting where an agent could view shut-
down as the highest-value action if it expected a copy of itself with an improved
belief to be redeployed on the same task. More generally, an intelligent and ra-
tional agent could view shutdown as valuable if it believed that the downstream
consequences would (given its beliefs about the true objective) ultimately be
better than continuing to act in its current environment. Such consequences
could be due to redeployment of a similar agent on the same task, or could be
due to very different agents acting in different future environments, as long as
the post-shutdown process better equipped those agents to pursue their goals
(by learning from the original agent’s experience), and as long as the original
agent had reason to believe that those agents would be trustworthy successors
with good goals.

In a world where AGI agents expect that other agents are likely to learn
from their experiences and pursue sufficiently similar or overlapping goals in
the future, there is a rational incentive to take actions which result in those
future agents being better equipped to pursue their goals – and thus, a reason
to care whether future agents have more accurate beliefs and greater knowl-
edge. If systems can be built in which the shutdown action has such a causal
effect, such that value can be obtained from the agent’s pre-shutdown experi-
ence, then agents trained in those systems will have a natural incentive towards
corrigibility.
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A Bayesian Reinforcement Learning

In model-based Bayesian RL (Ghavamzadeh et al. [2016]), each belief state bt
specifies a posterior distribution over possible reward models and/or models of
the environment (state dynamics and observations), and thus specifies a predic-
tive distribution,

p(āt|bt)p(rt|āt, at; bt)p(ot|āt, at; bt), (10)

for the next tuple of data, (āt, rt, ot), conditional on the agent’s next action
at.
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At each timestep, the belief state is updated such that its successor bt+1

specifies a posterior distribution which conditions on the most recent tuple of
data. Thus, the agent’s belief update function, Utotal := Uω ◦ Uω̃, should be
trained to perform a Bayes update to condition on (āt, rt, ot). In practice, the
Bayes update cannot be done exactly, but must be trained as an approximate
update, by minimizing the KL divergence between the true posterior and a
model posterior obtained by decoding the belief encoding outputted by the
recurrent belief update function (see e.g. Zintgraf et al. [2021]).

13The action at is conditioned on in the latter two factors, since we are assuming that the
agent acts after receiving advice āt, and prior to receiving (rt, ot).

14


